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Overview of Assessments

Climate Change Detection and Attribution:

* It remains uncertain whether past changes in tropical cyclone activity
exceed natural variability levels.

Projections for late 21st century:

 Likely fewer tropical storms globally (~no change to -34%), with even
greater uncertainty in individual basins (e.g., the Atlantic).

Likely increase in average hurricane wind speeds globally (+2 t011%),
though not necessarily in all basins

More likely than not (>50% chance) that the frequency very intense
hurricanes will increase by a substantial fraction in some basins

Likely higher rainfall rates in hurricanes (roughly +20% within 100 km
of storm)

Sea level rise is expected to exacerbate storm surge impacts even
assuming storms themselves do not change.



HadCRUT?3 global mean temperature anomalies (1850-2010)
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There is some recent evidence that overall Atlantic hurricane
activity may have increased since in the 1950s and 60s in
association with increasing sea surface temperatures...

Increasing data uncertainty
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PDI is proportional to the time
integral of the cube of the surface
wind speeds accumulated across all
storms over their entire life cycles.




The frequency of tropical storms (low-pass filtered) in the Atlantic basin 6
since 1870 has some correlation with tropical Atlantic SSTs
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* = Significant at
p=0.05

Adjustments to storm counts based on
ship/storm track locations and density

Sources:
Vecchi and Knutson (2008)
Landsea et al. (2009)
Vecchi and Knutson (in press)

vations per month per 2°x2° cell, for August-October
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Global Tropical Cyclone
Intensity Trends

There is some statistical
evidence that the strongest
hurricanes are getting stronger.
This signal is most pronounced in
the Atlantic. However, the
satellite-based data for the global
analysis are only available for
1981-2006.

Quantile regression
computes linear trends for
particular parts of the
distribution. The largest
increases of intensity are
found in the upper quantiles
(upper extremes) of the
distribution.

Source: Elsner et al., Nature, 2008.8



IPCC Projections of Future Changes in Climate
Global Mean Temperature Change
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Zetac Regional Model reproduces the interannual variability 10
and trend of Atlantic hurricane counts (1980-2006)

18-km grid model nudged toward large-scale (wave 0-2) NCEP Reanalyses

Atlantic Hurricanes (1980-2006): Simulated vs. Observed

Correlation = 0.84; Linear trends: +0.21 storms/yr (model) and +0.15 storms/yr (observed).
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Simulating past variability in Atlantic tropical cyclone activity

Tropical Storms (Annual)

Number of Tropical Storms Hurricanes (Aug - Oct)

Number of Hurricanes
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Progress has been made in developing
dynamical and statistical/dynamical
models for seasonal tropical cyclone
frequency.

Left: examples for the Atlantic basin,
using high resolution atmospheric
models; regional dynamical
downscaling models; and
statistical/dynamical techniques.

(a) and (b) use NCEP Reanalysis.

(c) and (d) use only SSTs.

Current question: Is the cooling of
tropopause transition layer (TTL)
temperatures crucial for simulating the
Atlantic trend in TCs over this period?

Source: Knutson et al., Nature Geoscience (2010).



Projected Changes in Regional Hurricane Activity

GFDL 50-km HIRAM, using four projections of late 215t Century SSTs.
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Source: Courtesy Ming Zhao, GFDL. Adapted from Zhao, et al. (J. Climate, 2009)
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Global Model Tropical Cyclone Climate Change

Experiments: Use A1B Scenario late 215t century projected
SST changes from several CMIP3 models
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TABLE 51

TC Frequency
Projection:
Feference Model'type FResclution’ Expenment Basin
Glabal NH SH | NAtl | NW NE | N S SW
Pac. Pac | Ind | Ind | Pac
Tropical Storm.
Frequency Changes
(%)
Sug etal 2002 A TIN6 L21 10y _ 1 3 —a ] B +9 57| -
(ref 36) Timeslice (~120km) | 1xCO2, 22CO2 34 8 o 61 66 67 - 57131
MecDonald et al. HadAM3 NI144 L30 15¢ 15952 6 3 _ -3 3 N 47 | +1 R
2005 (ref 53) Timeslice (~100%kam) 1975-1994 6 10 30 30 80 42 18
2082-2047 0
Hasegawa and CCSRENIESTRC | TIO&L3& 320y at 1CO2 _4
Emori 2003 (ref 34) GC timeslice {~120km) Tx20y at 2xCO2
Yoshimura et al. A T106 L21 10y 1=
2006 (ref 55) Timeslice (~120km) | 1xCO2, 2xCO2
Oouchi et al. 2006 MEIIMA TL939Ls0 | l0vAlLB _ 3 17 | - _ _ = | % -
(et 10) Timeslice {20k 1982.1993 30 218 32 34 33 34 52 28 | 43
2080-2099
Chauvin et al. 2006 ARPEGE Climat ~50km Dowmnscale 18
(ref11) Timeslice CNRM B2 g
Dovwnscale T
Hadley A2
Stowasser et al. IPRC Fegmonal Downscale +19
2007 NCAR CCSM2,
(ref 56) 6xCO2
Bengtsson et al. ECHAMS T213 (~60 2071-2100, AIB 9 -8 =20 =4 26
2007 (ref 23) fimeslice km)
Bengtsson et al. ECHAMS T319 (40 3071-2100, A1B -12 -13 28 +7 _51
2007 timeslice Jom) - - ’
(ref 23)
Emanuel etal. 2008 | Stamstical- - Downscale 7 N _ _ = = = - I i
(ref 21) determimstic CMIP3 mods.: 7 4 4 =2 o - § |wa|wa
AlB, 2180-2200
Average over 7
models
Kmtson et al. 2008 GFDL Zetac 18km Downscale 27
(ref22) regonzl CMIP3 ens. ALB, -
2080-2100
Leslie et al. 2007 OU-CGCM with Upto 50 3000 to 2050 -0
(ref 5T} high-res. window km control and 15922
{6 members)
Gualdi ot al 2008 SINTEX-G TG (~120 | 30w 1=CO2, -16 (jxj -14 =20 -3 -13 -14 | -22
(ref 34) coupled model km) XCO2, 44
4:CO2 -
(4x)
Semmler et al. 2008 Rosshy Centre B km 16 yr control and 13
(ref 58) regonal modal A2 2085-2100
Zhao et al 2009 GFDL HIRAM 50 km Downscale ALB:
3 fimesh CMIF3 =18 ens. -
(ref12) = GoLan: | -20 a4 |32 |30 |29 [=15|2 |30 32
HadCM3 -20 -14 =33 | -5 -5 -23 | 43 | 33| -3
ECHAND 11 +5 42 |62 |12 +61 | -2 | -a1 | 42
-20 -17 27 | -1 -52 +35 | -25 | -13 | -48
Sug et al. 2009 MAMET global Downscale AlB:
AGCM timesh 20 km MRICGCM2 S
et 59) ] okm VRICGODR3 | -29 31 |27 |22 |36 | -39 | -30 | -28|-22
20km MIROC-H =25 =15 -15 | +23 -29 -30 | -29 | -25 | -27
2Mkm CMIP3 =18 ens. - - - -
&0km MEICGOM?.3 27 -15 -42 -1_3 +28 -50 +3.__- -%4 -0
60 km MIROC-H -20 -21 -19 | 5 -6 25 | <15 | -5 | 42
60 km CMIF3 =18 ens. o 2 17 a5 _26 _ 12 I
&0 km CSIRO 20 21 1 _ ::3 5_6 31 1-_ 22 3
-6 0 -16 | +6 +64 42 | +79 | +1 -69
-21 -19 -15 | 4 -14 33 |33 (0 -36
-22 -19 -11 | -37 +13 -49 | -7 -18 | +10
12

Tropical Cyclones Frequency
Projections (Late 215t century) -
Summary

Blue =
decrease

Red =
increase
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Source: Knutson et al., Nature Geoscience 2010.



Statistical/Dynamical Downscaling Projections: Emanuel et al. (2008)
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Table £, Intensity Technique' Resclution/ Climate Change Clabal NH SH NAd, | N NW NE Nhd | & W
Projections: Model Mletric type scenario NW Atl Pac. Pac. Ind. Pac.
Pac,
Metric NE
FReference Pac
Potential intenzity or
stat/dynamical
projections (% Change)
Vecchi and Soden 2007 Emanue] BT, Max Wind CMIP? 18-model 26 27 24 21 3.5 17 0.99
(adapted from ref 60) revermble speed (¥g) AlB (100yr trend) (6.4 (76 | (86
W dizz. beating 16.1) 171 | 8.6

Enutson and Tuleya Potential Infensity | Presswre fall | CMIF2+ 5.0 5.4
2004 Emanuel (%) +1%y CO2 (5.0,
(adapted from ref 5) reversible 80-wr trend 21.9)
Enutson and Tuleya Potential Infensity, | Presswe fall | CMIF2+ 7.6 g2
2004 Emanuel (%a) +1%/y CO2 (-3.3,
(r=f 9) peeudoadiabatic 80-vr trend 8.0
Enutson and Tuleya Potential Infensity, | Presswre fall | CMIP2+ 152 158
2004 Holland (%a) +1%yr C02 (3.4,
(r=f ) 80-yr trend 42.5)
Emanuel et al , 2008 Stat. Thyn Model Max Wind CMIP3 7-model 45 25 6.1 0.2 3.7
(r=f 21) speed (%2) AlB (2181-2200

oz 1981-2000)
Dhuamical Model
Projections (Max wind
speed %0 change)
Enutson and Tuleya GFDL Humeans 9 km gnd CMIF2+ 5.0 54 6.6
2004 Model mner nest +1%/y CO2 (3.3.6 (L1,
(efS) B0-yr trend 10.1)
Enutson and Tuleya GFDL Humcans 9 km gnd CMIP2+ 138 136 148
2004 (Prezsure fa11) Model mner nest; +1%/y CO2 (8.0, (3.6,
{ref 9 Pressure fall 80-vr trend 16.5) 25.00

(%a)
Enutson et 2l. 2001 GFDL Humcans 18 kan grid GFDLR30 [
{=f 61) Model w./ ocean downseals,
coupling +1%y CO2 yr

J1-120avg
Enutson et 2l. 2008 GFDL Zetac 18 kan Dewnscale 10
(ref 22) regional CMIP3 ens. AlB, -

2080-2100
ek =t 21 2006 SRUDIA TI559160 | 10y AL 107 |85 14.1 112 | 42 06 |-128 | 173 | 20
(r=f 10} Tmmeslice (~20km) 1982-1993
(Average miensity) 2080-2099
Oouch: ef 2L 7006 FRUTMA TIS9L60 | 10y AIB 137 | 155 |60 01|20 | 50 |-167 |82 | 225
(r=f 10) Tmneshce (~20lkm) 1982-1993
(Averaze amnmal 2080-20%9
mEImm Itensity)
Sexomler et al. 2008 Fsshy Centre 28 km 16 yr control and +4
(r=f 58) regional model A2 2085-2100
Walshet 2l 2004 CSIRODARTAM | 30km 2xC02; 2061- +26%
(ref 55) regional model 2090 mmnus 1961- P-070

1950 !

mb
Bengtssonet al. 2007 ECHAMS T319(~40 2071-2100, AIB +400,
(ref 23) timeshice km) 50
n's

Chawvin et 2. 2006 ARPEGE Climat ~50 km Diownscale
(r=f 11) Tmmeslice -CNEM B2 -0

- Hadley A2 -0
Stowasser et al. 2007 IPRC Fegonal ~50 km Downscale PDI -
(ref 56) NCAR CCSM2, +50%

EC02 -
Leche et 2l 2007 QU-CGCM wath UptoS0km | 2000 to 2050 +100
{=f 5T) ugh-res. window control md 15922 LY

(6 members) '_u 30

nvs

Tropical
Cyclone
Intensity
Projections

Blue = decrease

Red = increase
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Source: Knutson et al.,
Nature Geoscience 2010.



Example of a “double-downscaling” method used to explore frequencies

and intensities of Atlantic hurricanes at high resolution
Geophysical Fluid Dynamics Laboratory/NOAA
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Late 215t Century Climate Warming Projection-- Average of 18 CMIP3 Models

Modeled Category 4 & 5 Hurricane Tracks

Present Climate
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SUMMARY OF PROJECTED CHANGE

Cat 4+5 frequency:

Projected Changes in Atlantic Hurricane Frequency over 21st Century 81% increase, or
10% per decade

125
o,
-
-
g 75 ; ;
Y Estimated net impact
@ of these changes on
N e
5 25 damage potential:
S _ +28%
5 -25 -J'
-
)
L .
-75
Trop. Storm+ Cat.2+3 Cat.4+5
Cat. 1 Hurr. Hurricane Hurricane

* Colored bars show changes for thel8 model CMIP3 ensemble (27 seasons); dots
show range of changes across 4 individual CMIP models (13 seasons).

Source: Bender et al., Science, 2010.



Tropical Cyclone Precipitation Rate Projections (Late 215t Century)

Table 53, '
TC Precipitation _ . _
Projections Blue = decrease; Red =increase
Feference Modeltype Fasoluton’ Experment Bazns Fadie around Percent Change
storm center
Haseg=wa and Fmon CCSR/NIESFRLC | TLO6L36 S0y at 1L 02 ITW Pacific 1000 km 5.4
2005 (ref 54) GC timeslice (120l Ty at 2002
¥ oehmurs et al. 2006 ThIA GEMBOIL TI06L21 10v Global 300 km 210 (Arakawa.
{ref55) Timeclice o 1xCO2, 2=C0O2 5'-]1 N I}
SChmnert
~+15 (Kuo)
Chawman et al. 2006 ARPEGE Clhimat ~50 kam Dowmnscale CHEM B2 Aflanhe n'a 5 : : oo
Substantial increase
(mf11) Timeshice Downscale Hadlay 42 ‘ e
Benstson et al 2007 ECAAND T213 (60 km) 20712100, A1B Tarthem 550 km +21  (all ICs)
£23) timeslic Hemsphe Accun. Al - ' i L
(e : mepers | AefumAlene | 30 (TC >33 m/s)
Emtson et al 2008 GFDL Fetac 18 km Dowmnscale CWMIF3 ens. Atlanhe 50 km +17
{r=f22) regional AIB, 2080-2100 100 km N
400 km +23
+10
Emstzon and Tuleya 2008 | GFDL Humcane 0 km mner pest CMIP2+ Atlanhe NE -~ 100 km T
(r=f62) Model (idealized) 1% CO2 Pacific, NW =
80y trend Pacific
Gualdi et al 2008 SDNTERLG TL106 (~120 km) 30y 1=COL 2xC02, | Global 100 km +6.1
(=i 34) coupled model 4 CO2 400 km 18
precip CONTROL ASQ precip WABMING ASCG
B [ 1 I 1 A I v o | e 5 1 I 1 1 I I | 1om4
4 :I bz 44 :I“= Knutson et al. (2008)
g - — = a4 - =08 .
o] - o -1l ... | Ava. Rainfall Rate Increases:
L T . ;. C L 50 km radius: +37%
o] = o & “U = | 100 km radius: +23%
-1 7] C | ¢ -1 C ] 150 km radius: +17%
—% - B —& - ® s
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— cr® ] C] ® Average Warming: 1.72°C
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SUMMARY ASSESSMENT (other storm
characteristics/impacts):

Tropical Cyclone Projections: Genesis,
Tracks, and Duration

We have low confidence In projected changes in
genesis location, tracks, duration, or areas of impact.
Existing model projections do not show dramatic
large-scale changes in these features.



‘Possible Range’ of Projections?
Or, speculations on what could make things worse than projected?

Atlantic Hurricane Acitivity vs. Sea Surface Temperature
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A comparable correlation
exists between the power
dissipation and the tropical
Atlantic SST relative to mean
tropical SST (bottom).
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‘Possible Range’ of Projections?

Or, speculations on what could make things worse than projected?

Vertical profile of tropospheric warming:

* Models and theory predict that the vertical profile of tropical tropospheric warming
will amplify with height, while radiosonde-based and some satellite-based observations
suggest that the troposphere has warmed uniformly with height. A uniform warming
with height would be ‘de-stabilizing’, and would imply future hurricane activity
increases much larger than currently projected (by ~ 3-4x). Modeling studies and
critical reanalysis of observations (e.g., using winds to infer temperature trends)
suggest that the observed of ‘destabilization’ of tropical temperatures from
radiosondes and satellites are likely unreliable.

Interannual Variability
vertical profile
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‘Possible Range’ of Projections?
Or, speculations on what could make things worse than projected?

Seasonal Wind Shear Anomaly Potential Intensity Anomaly SST Anomaly (Tropical-mean SSTA)
100°w 80°wW 60°W 40°W 20°W 0° 100°w 80°wW 60°W 40°W 20°w 0° 8

The range of possible
projections could be even
broader than inferred
from the AR4 models
(sample of 4 models
shown at left):

* IPCC AR4 models favor a
weak El Nino-like signature to
: a the pattern of 215t century
- R g - | ' warming, and strongly favor

: y enhanced vertical wind shear
over the Caribbean and
tropical Atlantic. However,
some models project little
change in wind shear and
some researchers (Cane et
al.) argue that the Pacific
warming signal will be
distinctly La Nina-like, which
‘ could substantially impact
e Atlantic hurricane projectiogg.
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‘Possible Range’ of Projections?

Or, speculations on what could make things worse than projected?

Lower stratospheric temperatures:

« Can lower stratospheric or tropopause transition layer (TTL) temperatures
(apparently cooling) affect tropical storm frequency or hurricane intensity? Emanuel
statistical/dynamical downscaling: yes for both. Current GFDL dynamical models: no
for tropical storm frequency, not clear for intensity (upper tropospheric temperatures
affect hurricane intensity in the GFDL models). Also, are NCEP potential intensity
trends since 1980 reliable or do they suffer from inhomogeneity problems?

Statistical/Dynamical Downscaling of Atlantic
Tropical Storm Frequency (1870-2005)

Potential Intensity trends since 1980
from NCEP Reanalysis
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Source: K. Emanuel, AMS Hurricanes and Tropical Meteorology Conference abstract, 2010.



‘Possible Range’ of Projections?

Or, speculations on what could make things worse than projected?

Tropical cyclone-induced changes in ocean heat transport:

- Possible role of tropical cyclones in ‘equable’ climates of 3-5 million years
ago being investigated, but implications for this mechanism on climate for

next century or so remain highly speculative. Tropical cyclones cause less
than 10% of global poleward heat transport in the current climate,
according to the latest studies.
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Overview of Assessments

Climate Change Detection and Attribution:

* It remains uncertain whether past changes in tropical cyclone activity
exceed natural variability levels.

Projections for late 21st century:

Likely fewer tropical storms globally (~no change to -34%), with even
greater uncertainty in individual basins (e.g., the Atlantic).

Likely increase in average hurricane wind speeds globally (+2 t011%),
though not necessarily in all basins

More frequent very intense storms (> 50% chance these will increase
by a substantial percentage in some basins).

Likely higher rainfall rates in hurricanes (roughly +20% within 100 km
of storm)

Sea level rise is expected to exacerbate storm surge impacts even 27
assuming storms themselves do not change.



Emergence Time Scale: If the observed Cat 4+5 data

since 1944 represents the noise (e.g. through bootstrap
resampling), how long would it take for a trend of ~10%

per decade in Cat 4+5 frequency to emerge from noise?
Answer: ~60yr (bythen 95% of cases are positive)

Number of Cat 4+5 Atlantic Hurricanes

With Emanuel Adjustment for Early Storm Intensities
\ ‘ [ ' I ! \ ' I ' [
Decreasing confidence in data
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Instead, assume
residuals from a
4% order
polynomial: 55 yr

Instead, resample
chunks of length
3-7yr. 65-70 yr

U.S. Landfalling

Line: 20-yr ru

Cat 4-5 hurricanes (1851-2008)
nning mean; source: HURDAT
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Source: Bender et al., Science, 2010.



